\(\int (2-2 \sin (c+d x))^n \, dx\) [17]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 12, antiderivative size = 59 \[ \int (2-2 \sin (c+d x))^n \, dx=\frac {2^{\frac {1}{2}+2 n} \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-n,\frac {3}{2},\frac {1}{2} (1+\sin (c+d x))\right )}{d \sqrt {1-\sin (c+d x)}} \]

[Out]

2^(1/2+2*n)*cos(d*x+c)*hypergeom([1/2, 1/2-n],[3/2],1/2+1/2*sin(d*x+c))/d/(1-sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {2730} \[ \int (2-2 \sin (c+d x))^n \, dx=\frac {2^{2 n+\frac {1}{2}} \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-n,\frac {3}{2},\frac {1}{2} (\sin (c+d x)+1)\right )}{d \sqrt {1-\sin (c+d x)}} \]

[In]

Int[(2 - 2*Sin[c + d*x])^n,x]

[Out]

(2^(1/2 + 2*n)*Cos[c + d*x]*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1 + Sin[c + d*x])/2])/(d*Sqrt[1 - Sin[c + d*
x]])

Rule 2730

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2^(n + 1/2))*a^(n - 1/2)*b*(Cos[c + d*x]/
(d*Sqrt[a + b*Sin[c + d*x]]))*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1/2)*(1 - b*(Sin[c + d*x]/a))], x] /; Free
Q[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2^{\frac {1}{2}+2 n} \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-n,\frac {3}{2},\frac {1}{2} (1+\sin (c+d x))\right )}{d \sqrt {1-\sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 5 in optimal.

Time = 0.16 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.83 \[ \int (2-2 \sin (c+d x))^n \, dx=-\frac {4^n B_{\frac {1}{2} (1-\sin (c+d x))}\left (\frac {1}{2}+n,\frac {1}{2}\right ) \sqrt {\cos ^2(c+d x)} \sec (c+d x)}{d} \]

[In]

Integrate[(2 - 2*Sin[c + d*x])^n,x]

[Out]

-((4^n*Beta[(1 - Sin[c + d*x])/2, 1/2 + n, 1/2]*Sqrt[Cos[c + d*x]^2]*Sec[c + d*x])/d)

Maple [F]

\[\int \left (2-2 \sin \left (d x +c \right )\right )^{n}d x\]

[In]

int((2-2*sin(d*x+c))^n,x)

[Out]

int((2-2*sin(d*x+c))^n,x)

Fricas [F]

\[ \int (2-2 \sin (c+d x))^n \, dx=\int { {\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n} \,d x } \]

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((-2*sin(d*x + c) + 2)^n, x)

Sympy [F]

\[ \int (2-2 \sin (c+d x))^n \, dx=\int \left (2 - 2 \sin {\left (c + d x \right )}\right )^{n}\, dx \]

[In]

integrate((2-2*sin(d*x+c))**n,x)

[Out]

Integral((2 - 2*sin(c + d*x))**n, x)

Maxima [F]

\[ \int (2-2 \sin (c+d x))^n \, dx=\int { {\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n} \,d x } \]

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((-2*sin(d*x + c) + 2)^n, x)

Giac [F]

\[ \int (2-2 \sin (c+d x))^n \, dx=\int { {\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n} \,d x } \]

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((-2*sin(d*x + c) + 2)^n, x)

Mupad [F(-1)]

Timed out. \[ \int (2-2 \sin (c+d x))^n \, dx=\int {\left (2-2\,\sin \left (c+d\,x\right )\right )}^n \,d x \]

[In]

int((2 - 2*sin(c + d*x))^n,x)

[Out]

int((2 - 2*sin(c + d*x))^n, x)